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1.0. Introduction. 
A problem frequently encountered in secon- 

dary analysis is that there is no one data file 
completely adequate to the researcher's needs. 
To be specific, data files which have detailed 
and comprehensive information on one topic 
required for an analysis may have only limited 
coverage of another. Suppose, for example, that 

one wanted to investigate the effects of health 
on labor supply and earnings using existing data 
resources. Perhaps the best available data on 
health is the National Health Survey, but it has 
only limited information on labor supply and 
earnings. On the other hand, the Michigan 
Survey of Income Dynamics has excellent coverage 
of labor supply and earnings and poor health 
data. How, then, are the files to be combined 
in an analysis? The traditional answer to this 
question is simply to analyze the data sets 
separately and to bridge their inadequacies with 
a variety of extrapolations, inferences, and 
"informed judgments" which the data may, to 
varying degrees, support. The problem with this 
approach is, of course, the difficulty of 
assessing the inferences made from it. As often 
as not, confidence in an author's conclusions 
comes more from the persuasiveness of his theo- 
retical argument than from the weight of the 
empirical evidence behind it. 

Consequently, we propose a different 
approach to the problem -- one which attempts to 
combine the best elements of two or more data 
sets into a single, analyzable file. For 
present purposes, we shall assume that such data 
sets are either samples of the same kind (iden- 
tical probability, simple random, etc.) from 
the same population or censuses of the same 
population. To accomplish this combination of 
files, we shall also make certain distributional 
assumptions in the context of which a specific 
model will be estimated. We want to stress the 
importance of these assumptions at the outset 
since the validity of our approach depends 
directly upon their validity. The use of our 
approach requires prior investigation of the 
validity of the assumptions unless there is 
supporting a priori knowledge. 

To clarify the exposition, we shall assume 
in our description of the approach that we wish 
to combine only two files, "adding" a variable 
from one file to the other so that regression 
or other statistical procedures may be performed 
which would include that variable. A generali- 
zation of the approach will be taken up at a 
later time. 

We shall begin with an examination of a 
"complete data" model and a "restricted complete 
data" model, both containing p variables, all of 
which are jointly observed in the same sample. 
The information gained from this exercise will 
then be used to place constraints on an 
"incomplete data" model in which p -1 variables 
are jointly observed in one sample and the pth 
variable is "added" from a second and 
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independent sample from the same population. 
Given these constraints, we shall then show 
that parameter estimates for the "incomplete" 
model (1) heuristically parallel that of the 
"complete data" model and (2) are maximum 
likelihood estimates. 
1.1. The "Complete Data" Model. 

Let us suppose that Y is a dependent 
variable of ultimate interest, H is the 
variable to be "added," X11 and X12 are sets of 

other variables, and u is a disturbance vector. 
The regression of Y, given H, on the remaining 
variable then can be written as 

(1) = ell + u 

12 

Let us also suppose that Y and H are jointly 
observed random variables (the X's are fixed) 
with the following likelihood function obtained 
from a random sampling of a bivariate normal 
distribution: X 0 X 
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From this construction of the joint distribu- 
tion, we can see that the marginal distribu- 
tions of the two variables are 

(3) Y N [(lll2)(ell 

) I] 
(4) H 

while the conditional distribution for Y, 
given H, is 

(5) (YIN) N ell ; 

e12/ 
being definable from the ratio of the joint 
distribution to the marginal distribution for 
H (Graybìll, 1961:63). 

Now suppose only independent samples of 
the marginal distributions are observed. This 
we shall call the "restricted complete data" 
model. Equation (1) cannot be estimated 
because knowledge of the conditional distribu- 
tion is necessary, and the marginal distribu- 
tions do not contain sufficient information 
to identify the parameters of the conditional 



distribution. Te show this, we need only note 

that model (3) gives the estimate 811 
+ 

812' and 
+ 

while model (4) gives 

estimators and -- all of which are clearly 

inappropriate in the sense that not all the 
required parameters are estimable since model 
(3) is over- parameterized.1 

Our situation is thus analogous to the 
"incomplete data" model in that only the marginal 
distributions of our variables are known. Conse- 

quently, if a procedure can be found which per- 
mits estimation of model (1) where models (2) 

and (5) are unobservable it may also be appli- 
cable to the analysis of the "incomplete data" 
model. 

What is needed are constraints which 
specify a relationship between the marginal and 
conditional (or jointly) distributions so that 

the latter can be identified from the available 
data in the former. Consider, for example, the 
following constraints: 

(6) Cell = 

where C is a vector of known constants. 
Reference to models (3) and (4) provides an 
interpretation for (6): it says that the 

vectors of variables, X11, do not have the same 

effect on Y as they have on H. Since the 
number of cases in which a set of independent 
variables has different effects on two different 
dependent variables probably is larger than the 
number of cases in which the effects are the 
same, the constraints are not particularly 
restrictive. 

Now in models (3) and (4) let 

Ill 811 + 

and 

2 a1 + 

The marginal equations for Y and H for two 
independent samples then be 

Y 
=(X :X 

)(I11 v 
11. 12 

H +w 

where we emphasize the independence of the 
marginal distribution by changing the first 
subscript of the X matrix in the equation for 
H. The application of ordinary least squares 
procedures to these equations thus would give 
the maximum likelihood estimates 

Ill, 112, ß, and 

However, since by (6) C'811 = 0, we can 

obtain estimates for each of the parameters of 
models (1) and (5) from them (Scheffe, 1959: 
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16 -19): 
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by the invariance property of maximum likelihood 
estimators (Graybill, 1961: 36 -37). Thus our 
constraints have permitted us to estimate all 
the parameters of the conditional model of Y, 
given H, even though only independent samples 
from the marginal distributions of the two 

variables were observed. 
Moreover, since our estimators in (7) are 

maximum likelihood estimators, they will have 
the properties of consistency and asymptotic 
normality. They may, however, be biased. In 

particular, 810 is a "ratio estimator," and 

"ratio estimators" are rarely unbiased 

(Donahue, 1964). But since C'811 / C'ß 

for some a priori constraint vector C, there 
may exist an optimal choice for C. For example, 
one might choose C so that the mean square 

error for 810 is at a minimum. This would 

minimize the variance plus the square of the 

bias of thus having the desirable effect 

of maximizing the predictive power of H. How- 
ever, further research on the optimal choice of 
C is necessary. 
1-.2. The "Incomplete Data" Model. 

As noted earlier, the "incomplete data" 
model is analogous to the "restricted complete 
data" model in that only independent samples 
from the marginal distributions of Y and H are 
known. However, the former differs from the 
latter in that the sampling frames, sampling 
procedures, and administrative procedures may 
differ for the two data files to be combined 
whereas, in the latter case, where there is 
only a single parent population, these differ- 
ences do riot exist. Consequently, comparison 
of the two data files to be combined in these 
terms is a necessary part of validating the 
"incomplete data" model. 

At the same time, it should be said that, 
despite these differences, the procedures of 
the preceding section could be used to solve 
models based on two data files ( "incomplete 
data" models). However, it is instructive to 
examine an alternative procedure for solving 
"incomplete data" models. We shall show that, 
given our assumptions and constraints, this 
alternative procedure produces results identical 
to those in the preceding section. 

We begin with a regression model for Y, 
given H, which has a somewhat different form 
from model (5) due to the fact that Y is 
observed in one sample and H in another: 
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where Y is again the dependent variable, a 

column vector of nl observations; is the 

variable to be "added" observed in lample 2, a 

column vector of n2 observations. H1 is the 

"added" measure, a column vector of nl observa- 

tions; is a submatrix of independent vari- 

ables nlxpl; 
X12 

is another submatrix of 

independent variables nlxp2; is the coeffi- 

cient for Hl; e11 is the column vector (plxl) 

of coefficients for X11; 
012 

is the column 

vector (p2x1) of coefficients for X12; and ul is 

the column vector (n1xl) of disturbances. The 

initial subscript indexes the sample in question; 
the second distinguishes subsets of independent 
variables. Since, except for Hl, equation (9) 

represents a conventional regression model 
estimable by ordinary least squares, the next 

step is to determine and its implications for 

the analysis. 
To do this, let us suppose that is a 

measure available in the second sample but not 
in the first. Now suppose that there are a 
number of other variables which are common to 
both surveys. From this common list, we want 
to find the subset that will predict LI.2 as well 

as possible. We may write this prediction 
equation as 

n 
1 
xl nxp pxl n xl 

X21 
1 

where H2 is the "added" variable in the second 

sample, a column vector n2x1; is the subset 

of independent variables described in X11 but 

measured in the second sample, a submatric 
n2xp1; the column vector of coefficients, 

and u2 is the disturbance vector (n2xl); and 

where the disturbances, ul and , have a 

bivariate normal distribution with zero means, 
finite variances, and zero es. 

n lxl 

+ °2 n 
BVN 

n 
1 u2 

2 
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Thus can be computed as 

(II) 
Hl = X11 (121121) 

-1 

Substituting equation (11) into equation (9) we 
get 

(12) D) I + 

112 

ell 
= X11 

212 

In words, what we have done has been to 
predict a variable, H, found in the second 
sample but not in the first from a list of 
variables common to both surveys; then using 
the coefficients from the equation run with 
the second sample data and the scores of the 
appropriate variables (the X11) in the first 

survey, we produced a set of predicted values 
for the H variable for the first sample. The 
result is equation (9). 

However, equation (9) cannot be estimated 
as it stands because its coefficient matrix is 
singular as shown below: 

_1 

(111 (121121) 
1 

11x1 

1 p12 

Ip2 

= (121X21) - X11 
-1 

- 

t n x11 n 

= 1 1X12 

Consequently, as was done with the "complete 
data" model, it will be necessary to place 
constraints on the coefficients. 

A variety of constraints are, of course, 
possible. For example, we could set = 0, 

but this has the rather ridiculous effect of 
asserting that Y and H are unrelated. Alterna- 
tively, we may employ the general constraint:2 

P1 p2 
a1010 + + d.e12 = 0 

j 
j =1 j 

where the c., and d. are all known real 

numbers such that not all are zero. The 
specification of the above constraint will 
depend on the particular model being estimated 
and the reasonableness of any specific con- 
straint in that context. For example, one 



might choose 

pl 

j 
011j = 

P2 

012. = 0 . 

In our particular case, we shall use neither or 
these but instead assume that C'811 = O. If we 

define the first column of the X11 matrix as a 

vector containing only unity for elements, then 
letting 

8111 = 

implies that 

C = (1,0,0,...,0) 

and that 0 and 0. In other words, 

the intercept for the matrix is set to zero. 

Model (9) can now be solved. The coefficient 

for H1 is in fact the last p -1 columns of 

X11 give the estimates, and the coefficients 

of X12 are the 812. The estimates and a2 

can be computed from the residual sum of 
squares for equations (9) and (10). 

Comparison of equations (9), (10), (12), 

with (3) and (4) show that our estimates for 

810' ell' 
and are the same for both the 

restricted "complete data" and "incomplete 
data" models. Furthermore, comparing the 
"incomplete data" model (9) with the "complete 
data" model (5), it can be seen that (9) is an 

approximation of (5) in the sense that has 

been used as a substitute for H. The con- 

straint 
= 8111 = 

0 was here chosen for 

illustrative purposes only, and may not be 
optimal in terms of the mean square error of 

criterion previously mentioned. However, 
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reference to models (1), (3) and (4) provides 
an easy interpretation of the constraint 

8111 = 
O. That is to say 8111 

= 
0 implies that 

the intercept term of model (3) is equal to the 
product of 810 and the intercept term of model 

(4), and that the intercept term of model (1) 

is zero. Because of our distributional assump- 
tions, the estimates are also maximum likelihood 
estimates. We should note, however, that we do 
not know how sensitive these estimates are to 
violations of the assumptions of distributional 
normality made here. Testing these assumptions 
will be one of our first research tasks. 

FOOTNOTES 

1 Specifically, model (3) contains one too 
many parameters for unique estimators to exist 
unless an additional constraint is imposed. 
Since model (3) is induced from the bivariate 
model (2), and models (2) and (4) lead to 
model (5); it is necessary that any such con- 
straint on model (3) be compatible with models 
(2) and (5). An appropriate constraint is 

given below. 

2 This alternative constraint derives from a 
comparison of models (3) and (12). The original 
constraint was applied to model (3) is identical 
to the final form of the parameter matrix of 
(12). The alternative constraint is applied 
to the initial parameter matrix of model (12) 

and is thereby equivalent to original constraint. 
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